CellNanOs

Center of Cellular Nanoanalytics Osnabrück


Osnabrück University navigation and search


Main content

Top content

Schematic drawing and Western blot describing bifunctional lipids.

Bifunctional lipid technology for the identification of lipid-protein interactions using the example of ceramides as baid lipid (Haberkant et al., Angew. Chem., 2013).

Synthesis and biofunctionalization of probes and nanomaterials

Coordinator: Markus Haase

Research field A aims at the provision of a broad spectrum of probes with tailored physical and biological properties for spectroscopic and microscopic investigations of cellular microcompartments. The following nanoprobes and reporters are of particular interest in this respect

  • organic fluorescent dyes and luminescent nanoparticles with tailored photo-physical properties and biological functionality
  • spin probes for labeling of proteins in complex cellular environments including complete cells
  • photoactivatable/photosynthesizable lipids and reagents.
Beginn Lab, Chemistry

Macromolecular "soft  interfaces" between cells and synthetic nanomaterials

Description coming soon...

Left: Cuvettes with luminescent nanoparticles, right: REM micrograph of upconversion nanoparticles.

Visible luminescence of different upconversion nanoparticles excited at 980 nm (left) and electron micrograph (right) (Haase lab, unveröffentlicht).

Haase Lab, Chemistry

Synthesis of anorganic nanocrystals

Description coming soon...

 

 

 

 

 

Holthuis Lab, Biology

Dynamics and hemostasis of membran lipids

Description coming soon

 

 

 

 

 

 

 

Tunable generation of light using nonlinear niobate nanocrystals (unpublished results)

Imlau lab, Physics

Ultrafast physics - Femtosecond photo-physics of nonlinear optical nanomaterials

The Imlau research group focuses on the photo-physical, nonlinear optical properties of nanophotonic probes with respect to high-resolution imaging and photomanipulation in cells. We study energy transfer mechanisms within luminescent or harmonic nanoparticles, but also to biomolecules at the interface and to the direct physiological environment with femtosecond temporal resolution. This allows for a precise, stepwise modeling and understanding of the processes involved. The results are particularly important for the further, targeted design of nonlinear optical nanoprobes.




Specific binding of nanoparticles (red) to target proteins (green) on mitochondria and single particle trajectories (Liße et al., Angew. Chem. 2011)

Piehler lab, Biology

Signal propagation across biological membranes - Biofunctionalization of nanoparticles for site-specific labeling

The Piehler group develops strategies for the biofunctionalization of nanoparticles for a site-specific, stoichiometrically defined conjugation with target proteins in living cells. Next to luminescent inorganic nanoparticles (quantum dots, upconversion nanoparticles), we use protein cages such as ferritin as scaffolds for nanoparticles. These can be efficiently doped with fluorescent dyes, but also loaded with a magnetic core for noninvasive manipulation by magnetic field gradients. By functionalization with highly selective biochemical recognition units, efficient targeting to proteins in the cellular context is achieved.




Schematic architecture and conformational organization of nucleic acid duplex structures anchored within an artificial lipid bilayer (Werz & Rosemeyer, Beilstein J Org Chem 2014)

Rosemeyer lab, Chemistry

Synthesis of lipo-oligonucleotides and their interaction with artificial lipid membranes

The group develops nucleic acids (DNA and RNA) which are 5’-hydrophobized by incorporation of lipophilic phosphoramidite building blocks. Duplex formation between such lipophilized probe nucleic acids and complementary DNA- or siRNA sequences is studied in artificial lipid bilayer membranes. Here, both their immobilization rates and stability within the bilayer as well as their transfection across artificial membranes or the human Stratum corneum are of interest. The goal is the optimization of their pharmacological applicability as tnRNS's.




 
 

Normalized EPR spectra of different Gd-doped nanoparticles (Komban et al., Angew. Chem. 2013)

Steinhoff lab, Physics

Makromolecule Structure - EPR spectroscopy of nanomaterials

The Steinhoff group uses ferromagnetic resonance and electron paramagnetic resonance (EPR) spectroscopy to characterize the magnetic properties of nanomaterials and thin films. Distance distributions between paramagnetic centers are utilized to determine long-range order and growth mechanisms. Studied subjects are, e.g., lanthanide-doped nanocrystals and spin labeled proteins tethered to nanostructured surfaces.